

NEFES 2025

The 10th International Conference on New Energy and Future Energy System

July 21-24, 2025 Matsue, Japan

Conference Program

Table of Contents

Part I Conference Schedule Summary	I
Part II Keynote Speeches	3
Keynote Speech 1: Hybrid Energy with Hydrogen Deployment Strategies for the Transition to Communities	
Keynote Speech 2: Energy from Renewable Sources - Who Knows How Much Its Harvesting Cos	t? 4
Keynote Speech 3: Nitinol as Versatile Materials for Applications from Biomedical to Solid State	_
Keynote Speech 4: Development of an Experimental Elastocaloric Heat Pump for Solid-Applications	-State Cooling
Part III Poster Presentations	7
Part IV Oral Presentations	10
Oral Session 1: Advanced Energy Systems, Materials and Urban Sustainability	12
Oral Session 2: Smart Grids, Energy Storage and Fault Analysis	14
Part V Conference Venue	16
Part VI Acknowledgements	18

Scan the QR Code to Download the Abstract Proceedings

* This Program and abstract proceedings are used for NEFES 2025 academic exchange only

Part I Conference Schedule Summary

July 21, 2025 / Japan Standard Time (UTC+9)		
14:00-18:00	On-site Registration In front of Small Hall, Kunibiki Messe	
17:00-18:00	MS Teams Online Conference Testing and Ice Breaking MS Teams Link: http://www.academicconf.com/teamslink?confname=nefes2025	

* Note for offline registration:

- Please show us your name or paper ID for registration;
- Please pick up all the conference materials at the registration desk (Name Card, Conference Program, Lunch & Dinner Tickets, etc.).

July 22, 2025 / Japan Standard Time (UTC+9)

Location: Meeting Room 401, Kunibiki Messe

MS Teams Link: http://www.academicconf.com/teamslink?confname=nefes2025

Opening Ceremony and Keynote Speeches are chaired by:

Prof Hossam A Gabbar, Director of Smart Energy Systems Lab, Ontario Tech University

v	n A. Gabbar, Director of Smart Energy Systems Lab, Ontario Tech University,
Canada	
00 40 00 50	Opening & Welcome Speech
08:40-08:50	Prof. Mikihisa Umehara, Toyo University, Japan
	Keynote Speech 1: Hybrid Energy with Hydrogen Deployment Strategies for the
08:50-09:25	Transition to Zero Carbon Communities
08:30-09:23	Prof. Hossam A. Gabbar, Director of Smart Energy Systems Lab, Ontario Tech
	University, Canada
-	Keynote Speech 2: Energy from Renewable Sources - Who Knows How Much Its
00.25 10.00	Harvesting Cost?
09:25-10:00	Prof. Leszek S. Czarnecki, Department of Electrical Engineering and Computer
	Science, Louisiana State University, USA
10:00-10:25	Group Photo (At the entrance of Kunibiki Messe)
10:25-10:45	Coffee Break
-	Keynote Speech 3: Nitinol as Versatile Materials for Applications from Biomedical
10:45-11:20	to Solid State Refrigeration
10:43-11:20	Dr. Assunta Borzacchiello, Institute of Polymers, Composites and Biomaterials,
	National Research Council, Italy
	Keynote Speech 4: Development of an Experimental Elastocaloric Heat Pump for
11:20-11:55	Solid-State Cooling Applications
11.20-11.33	Prof. Adriana Greco, Department of Industrial Engineering, University of Naples
	Federico II, Italy

11:55-13:30 Lunch Break

13:30-17:35 Oral Session 1: Advanced Energy Systems, Materials and Urban Sustainability

July 23, 2025 / Japan Standard Time (UTC+9) Location: Meeting Room 401, Kunibiki Messe MS Teams Link: http://www.academicconf.com/teamslink?confname=nefes2025		
08:50-12:00	Oral Session 2: Smart Grids, Energy Storage and Fault Analysis	
16:15-17:15	Poster Session (Meeting Room 501)	
17:30-20:30	Awarding Banquet at YUUSHIEN Garden in Daikonshima (Please gather at the entrance of Kunibiki Messe)	

July 24, 2025 / Japan Standard Time (UTC+9)		
09:10	Departure from Kunibiki Messe (Please gather at the entrance of Kunibiki Messe)	
09:30-10:30	Visit Matsue Castle	
10:40-11:40	Horikawa Sightseeing Boat Ride	
11:50-12:40	Lunch Break	
13:00-15:00	Matsue Vogel Park	
15:30	Arrival at JR Matsue Station at 15:30 (Subject to no traffic delays)	

Notes: Please note that the itinerary, including the order of visits and time spent at each location, is subject to change based on actual circumstances.

Part II Keynote Speeches

Keynote Speech 1: Hybrid Energy with Hydrogen Deployment Strategies for the Transition to Zero Carbon Communities

Prof. Hossam A. Gabbar
P.Eng, Fellow IET, Distinguished Lecturer-IEEE NPSS;
Director of Smart Energy Systems Lab, Ontario Tech University, Canada

Biography: Dr. Gabbar is a full Professor in the Department of Energy and Nuclear Engineering, the Faculty of Engineering and Applied Science, at

Ontario Tech University (UOIT), where he has established the Energy Safety and Control Lab (ESCL), Smart Energy Systems Lab, and Advanced Plasma Engineering Lab. He is the recipient of the Senior Research Excellence Aware for 2016, UOIT. He is recognized among the top 2% of worldwide scientists with high citation in the area of energy. He is a Fellow IET (FIET) and a Distinguished Lecturer – IEEE NPSS on Nuclear-Renewable Hybrid Energy Systems and Plasma-based Waste-to-Energy. He is leading national and international research in the areas of smart energy grids, energy safety and control systems, and waste-to-energy using advanced plasma technologies. Dr. Gabbar obtained his B.Sc. degree in 1988 with first class of honor from the Faculty of Engineering, Alexandria University (Egypt). In 2001, he obtained his Ph.D. degree from Okayama University (Japan). From 2001 till 2004, he joined Tokyo Institute of Technology (Japan), as a research associate. From 2004 till 2008, he joined Okayama University (Japan) as an Associate Professor, in the Division of Industrial Innovation Sciences. From 2007 till 2008, he was a Visiting Professor at the University of Toronto. He also worked as process control, safety, and automation specialist in energy and oil & gas industries. Dr. Gabbar has more than 230 publications, including patents, books / chapters, journal and conference papers.

Abstract: In this talk, hybrid energy with hydrogen deployments strategies are analyzed, modeled using collaborative simulation. The different modeling levels of hybrid energy systems and hydrogen technologies will be presented as interconnected with community infrastructures. Collaborative simulation approaches are used to evaluate the utilization of planning hydrogen deployment in municipalities and community applications. The concept of energy semantic network is utilized to model energy networks and interconnected infrastructures while defining key performance indicators. The collaborative simulation will enable the definition of different strategies and scenarios and optimize based on performance, risks, and transactive energy. Case studies will be presented with energy, nuclear, transportation, hydrogen, and water networks as interfaced with infrastructures.

Keynote Speech 2: Energy from Renewable Sources - Who Knows How Much Its Harvesting Cost?

Prof. Leszek S. Czarnecki
Department of Electrical Engineering and Computer Science, Louisiana State
University, USA

Biography: Leszek S. Czarnecki, IEEE Life Fellow and Distinguished Professor at Louisiana State University, is a Titled Professor of Technological Sciences in Poland. He earned Ph.D. and D.Sc. degrees in electrical engineering from

Poland's Silesian University of Technology, worked at Canada's National Research Council, and joined LSU's Electrical and Computer Engineering Department in 1989.

In 1996, he became an IEEE Fellow for developing power theory for nonsinusoidal/asymmetrical three-phase systems and compensation methods. His major contribution, the Currents' Physical Components (CPC)-based power theory, earned him a nomination for the IEEE Proteus Charles Steinmetz Award. Stanford University named him among the world's top 2% faculty in 2019, and Oxford University Press published his book *Powers in Compensation in Circuits with Nonsinusoidal Currents*.

Decorated by Poland's President with the Knight Cross for promoting Poland's NATO accession, he is an avid adventurer: he climbed Lhotse (8,350m) without oxygen, traversed the Rwenzori Mountains, skied 500km across Spitsbergen, and summited Denali, among other feats.

Abstract: The authors of this Keynote study on compensation, meaning reduction of excessive currents in electrical systems, are motivated by the need to lower the cost of electric energy delivery. This motivation strongly fits the power systems strategy of lowering, by power dispatch, the costs of energy delivery, as well as reducing the impact of electric energy production upon the environment. The development of renewable energy sources seems to be in sharp contrast to this optimizationoriented motivation. Optimization requires that the cost of harvesting such sources is known. It is a compound of various factors, such as the environmental impact, the use of the Earth's resources, development, maintenance, and profits, to finally include social and political implications. Unfortunately, the latest seems to be the dominating ones. Renewable sources are supported by various economic incentives from states' budgets. This support disturbs free market mechanisms, so economic optimization is losing its sense. Wind and solar energy do not cost, so in public perception, their use as electricity sources should reduce energy bills. However, the former president of the European Union (EU) Council said recently that bills for electricity in the EU are 2.5 times higher than in the US. He blamed EU policy towards reducing CO2 emissions for that. Government subsidies are not visible, moreover, in bills for electricity. Their increase could be only the tip of a huge iceberg. Consequently, the question: "Who knows how much harvesting renewable sources costs?" is legitimate and deserves investigation.

Keynote Speech 3: Nitinol as Versatile Materials for Applications from Biomedical to Solid State Refrigeration

Dr. Assunta Borzacchiello Institute of Polymers, Composites and Biomaterials, National Research Council, Italy

Biography: Dr. Assunta Borzacchiello has served as Senior Researcher and Research Director at the Institute of Polymers, Composites and Biomaterials (IPCB) of the National Research Council (CNR) since 2001. Her research

focuses on polymeric materials, biomaterials, smart materials, tissue engineering, controlled drug release, microfluidic techniques and rheology/microreology of complex fluids for biomedical applications.

She earned a summa cum laude M.S. in Chemical Engineering (1994) and a PhD in Materials Technologies (1998) from the University of Naples "Federico II". Notable academic roles include Visiting Scientist positions at Queen Mary and Westfield College (London, 1996) and the University of Connecticut (USA, 1997), Professor of Biomaterials at the University of Naples (2002–2011), and Visiting Professor at McGill University (Canada, 2018–2019).

With extensive international collaborations across leading research institutes and biomedical industries, she has authored over 120 peer-reviewed articles, 16 book chapters, and edited Wiley's *Encyclopedia of Composites* (H-index 43, 6,559 citations). She has been Principal Investigator of many research projects among which MIUR-PON ARS01 for medical biotechnological products, POR Campania's ADViSE on marine antitumor drugs, and bilateral programs with Egypt and Quebec. She has supervised 10 postdocs, 9 PhDs (including Marie Curie fellows), over 50 undergraduate students, and organized 6 international conferences.

Abstract: Nickel-titanium alloys commonly called as nitinol, a Shape Memory Alloy (SMA), is recognized as next generation alloy. Nitinol is a family of titanium based intermetallic materials that contain nearly equal amount of nickel and titanium, has been widely employed in many applications such as biomedical, actuators, aerospace and automotive devices. In near-equiatomic NiTi alloys, shape memory effect and superelasticity are due to thermoelastic martensitic transformation from parent austenite phase with B2 structure to the monoclinic (M) or rhombohedral (R) martensitic phase transformation. The biocompatibility, and exquisite properties of nitinol SMA have gained a lot of popularity among these several combinations, and allow to obtain smart material with shape memory effect and superelastic properties. Due to the functional properties of nitinol SMAs, their biomedical application has proven to be more successful by increasing the possibility as well as the performance of minimally invasive surgeries. The combination of nickel-titanium SMA is highly biocompatible which makes them useful as orthopedic implants, surgical instruments, cardiovascular devices, and orthodontic devices. The reversible austenite-to-martensite solid state transition under stress that occurs in Nitinol is associated to a release of heat, and this phenomenon is widely investigated in literature for the application in solid-state cooling devices. Elastocaloric cooling based on NiTi SMA exhibits excellent cooling capabilities. Due to the high specific latent heats activated by mechanical loading/unloading, large temperature changes can be generated in the material. The small required work input enables a high coefficient of performance. Solid-state cooling is an environmentally friendly, no global warming potential alternative to vapor compression-based systems.

Keynote Speech 4: Development of an Experimental Elastocaloric Heat Pump for Solid-State Cooling Applications

Prof. Adriana Greco
Department of Industrial Engineering, University of Naples Federico II, Italy

Biography: Adriana Greco is Full Professor of Applied Thermodynamics and Heat Transfer at the University of Naples Federico II, where she coordinates the research group on refrigeration and heat transfer. She holds a cum laude degree in Chemical Engineering (1994) and a PhD in Thermo-Mechanical Systems Engineering (1997) from the same university. Her research focuses on applied

thermodynamics, convective heat transfer, refrigerants, and solid-state refrigeration, with particular expertise in elastocaloric cooling.

She has authored over 140 scientific publications, including more than 50 on caloric cooling technologies, and has an h-index of 40 with 3055 citations (Scopus, 2025). She was Principal Investigator of the SUSSTAINEBLE project, funded by the Italian Ministry of University, and leads the Italian unit of the EIC Pathfinder Challenge 2023 project SMACOOL.

Prof. Greco collaborates internationally with institutions in China, Spain, Germany, and India. She is Editor-in-Chief of *Journal of Sustainability for Energy*, Associate Editor of *International Journal of Heat and Technology*, and serves on editorial boards of several journals. She is a reviewer for over 100 international journals and an active member of IIF-IIR, IES, and AIGE. She was listed among the World's Top 2% Scientists in both 2020 and 2022 for career impact and annual output.

Abstract: This study presents the development of an experimental heat pump prototype based on the elastocaloric effect—a promising solid-state cooling mechanism that leverages the reversible thermal response of Shape Memory Alloys (SMAs) under mechanical loading and unloading. Unlike conventional vapor-compression systems, elastocaloric cooling offers a potentially more energyefficient and environmentally friendly alternative, as it eliminates the need for refrigerants with high Global Warming Potential. The research is part of the project SUSSTAINEBLE (a Solution Using Solid-STate cooling: An INvestment Eco-compatiBLE) funded by the Ministry of University and Research (MUR) of Italy. The aim of this research, carried out by the group of the University of Naples Federico II, is the developing of a demonstrative prototype of the first Italian elastocaloric device for air conditioning. Air is the auxiliary fluid that will be used to avoid an intermediate heat exchanger. The operation of the device based on the AeR cycle uses a rotary mechanism that ensures a continuous flow of hot and cold air. A 2D rotative numerical model has been developed through COMSOL to attain the device's potential cooling and heating capacities and to optimize the geometrical parameters and the operative conditions of the device. The experimental setup utilizes nickel-titanium (NiTi) alloy elements, selected for their significant latent heat and mechanical resilience. The results of numerical simulations carried out following the optimization of the geometric parameters of the device are presented to analyze its potential in terms of energy performance. This work contributes to the growing body of research on solid-state cooling technologies and provides insights into the engineering and operational considerations necessary for scaling elastocaloric systems toward commercial viability.

Part III Poster Presentations

Poster Presentation Guidelines

Materials Provided by the Conference Organizer:

- > X Racks & Base Fabric Canvases
- ➤ Adhesive Tapes or Clamps

Materials Provided by the Presenters:

- ➤ Home-Made Posters
- Posters Printed by Conference

Requirements for the Posters:

Material: not limitedSize: W1200*H2100

Display Rack

Best Poster Presentation Selection Procedure

Selection Criteria:

- > Research Quality
- > Presentation Skill
- Design

Samples of Stickers

Selection Procedure:

- ➤ 6-8 volunteers will be invited from the participants to serve as the judges to review the posters. (Note: A judge would not have a poster or know the participant exhibiting a poster.)
- ➤ 2 red stickers and 2 green stickers will be provided for the judges. The red sticker stands for "Research Quality" with a value of 2 points; the green sticker stands for "Presentation Skill and Design" with a value of 1 point.
- Each judge will go around the poster session and give the stickers to the poster which he/she thinks is of high quality or well designed and well presented, please be notified that the judge cannot give 2 red or 2 green stickers to the same poster (one red and one green sticker is acceptable).
- After the poster session, the conference secretary will count the points from each poster and ONE best poster presentation with more points will be selected. If there is a tie, the one with more red (Research Quality) stickers wins.

Nature of the Award

- This award consists of free registration for the NEFES 2026 and a certificate.
- ➤ One Best Poster Presenter will be selected and honored with a certificate during the award ceremony. The winner will be announced at the banquet and featured on the NEFES 2026 official website.

List of Posters

Time: 16:15-17:15, July 23rd, 2025 Location: Meeting Room 501, Kunibiki Messe

-	
	Optimization of Porous Media with Tailored Pore Size and Thermal Conductivity
FES3153	Distributions for Enhanced Phase-change Heat Transfer in Loop Heat Pipes
	Asst. Prof. Yixue Zhang, College of Electromechanical Engineering, Qingdao
	University of Science and Technology, China
	Aluminium's Potential as A Metal Fuel and the Cogeneration of Heat and
FES3155	Hydrogen from the Aluminium-water Reaction
1220100	Mr. Muhammad Zahid, National Institute of Chemistry, University of Ljubljana,
	Slovenia
	Analysis on the Effect of Drying Kinetics Model Selection on Conveyor-Belt Dryer
FES3178	Design
1250170	Dr. Jyh-Rou Sze, Graduate Institute of Energy Engineering, National Central
	University
	Study on Optimization Design of Fracturing Parameters for Hot Dry Rock
	Geothermal Reservoirs Based on Integrated Simulation of Fracture Propagation
FES3204	and Heat Extraction Performance
	Prof. Ming Chen, School of Petroleum Engineering, China University of Petroleum
	(East China), China
	3D Printing Combined with Biochar Doped with Fe and Co to Fabricate the
	Cathode of the Bioelectro-Fenton System to Enhance Power Production and
FES3208	Remove a Bisphenol A
1250200	Dr. Chi-Wen Lin, Department of Safety, Health and Environmental Engineering,
	Graduate School of Engineering Science and Technology, National Yunlin University
	of Science and Technology
	Athlete Development Pathways - An Artificial Intelligence Applications and Data
FES3210	Governance of Grassroots Athletes Training Stations in Taipei City
	Prof. Wenbin Lin, Physical Education Center, Taipei National University of the Arts
	Insect Waste and Melanin Composite Biochar for Proton Exchange Membranes
FES3212	to Improve Performance and Power Production in Bioelectrochemical Systems
	Prof. Shu-Hui Liu, Department of Safety, Health and Environmental Engineering,
	National Yunlin University of Science and Technology
	The Impact of the Degradation of the Critical Current Value of the HTS Tape in
	a Superconducting Fault Current Limiter on the Coordination of the Power
FES3214	System Protection
	Dr. Sylwia Hajdasz, Institute of Automation, Electronics and Electrical Engineering,
-	University of Zielona Gora, Poland
	Algorithm for Identifying Short Circuits and Overloads in Medium Voltage Lines
FES3215	Dr. Beata Zieba, Institute of Automatic Control, Electronics and Electrical
	Engineering, University of Zielona Gora, Poland
	Near-infrared Emission Characteristics by Solar Pumping Using Rare-earth
FES3236	Doped Materials
	Mr. Takuma Nomura, Faculty of Engineering, Kitami Institute of Technology, Japan

EEC2220	Mid-infrared Supercontinuum Generation Using Tapered Ge-As-Se Glass Fiber
FES3238	Mr. Shuyang Zheng, Faculty of Engineering, Kitami Institute of Technology, Japan
FES3240	Mid-infrared Supercontinuum Generation Using Cascaded Bidirectionally
	Tapered Indium Fluoride Fibers
	Mr. Musashi Nitta, Faculty of Engineering, Kitami Institute of Technology, Japan
FES3252	Iron Phthalocyanine Grafted MXene Nanosheets as Single Atom Catalyst for
	Degradation of Organic Pollutants via Solar Photothermal Enhanced Persulfate
	Activation
	Prof. Dong-Hwang Chen, Department of Chemical Engineering, National Cheng Kung
	University
	Compositional Engineering of Hybrid Perovskite for High-Efficiency Indoor
FES3254	Photovoltaics
	Dr. Mijoung Kim, Kunsan National University, Republic of Korea

Part IV Oral Presentations

General Guidelines

- **♣** All presentation times are shown in Japan Standard Time (UTC+9).
- ♣ Duration for invited oral presentation: 20 minutes of presentation, including 3-5 Minutes of Q&A.
- ♣ Duration for regular oral presentation: 15 minutes of presentation, including 2-3 Minutes of Q&A.
- ♣ All presenters are requested to reach the Session Room prior to the scheduled time and complete their presentations on time.
- ♣ Presenters should prepare Power Pointer or PDF Files for Presentation with Paper ID (FES****) marked on the last page.
- ♣ A signed and stamped presentation certificate will be issued after the presentation.

Offline Oral Presentation Guidelines

Devices Provided by the Conference Organizer:

- ↓ Laptops (with MS-Office & Adobe Reader) & Projectors & Screen
- **♣** Laser Sticks
- Microphones
- Please send us the PowerPoint once it is ready and have the PPT back up in a U-disk. For presenters who do not send the PowerPoint, please save it in the laptop of the corresponding session 15 min in advance. Kindly tell the Session Chair (before the start of your session) that you are present.

Online Oral Presentation Guidelines

- ◆ Online Oral Presentation will be conducted via Microsoft Teams Meeting.
- If a presenter is not able to show up via Teams, the session chair/conference secretary will play the pre-recorded video presentation during his/her scheduled presentation time. If listeners have questions about the presentation, please contact the conference secretary to forward the questions.
- ♣ If a presenter cannot show up on time or has a problem with the internet connection, the session chair has the right to rearrange his/her presentation and let the next presentation start.

Best Oral Presentation Selection Procedure

ONE best presentation will be selected from EACH session based on the following criteria:

- ✓ Research Quality
- ✓ Presentation Performance
- ✓ Presentation Language

- ✓ PowerPoint Design
- ✓ Effective Communications

Selection Procedure

- An assessment sheet (see picture) will be delivered to listeners before the session starts;
- When the session finishes, each listener is required to fill out the sheet (he/she can vote for two excellent presentations) and give it to the Session Chair;
- For the online presenters, the assessment sheet would be sent in advance via e-mail. Kindly send us the filled form in electronic version within ONE HOUR after the session is completed;
- ➤ The Session Chair will count the votes and select the best oral presentation with the most votes. If there is a tie, the Session Chair will make the final decision.

Best Oral Presentations Award

The Best Oral Presenter from each session will receive an official certificate and a complimentary registration to the NEFES 2026.

Sample of Assessment Sheet

NEFES 2025 Oral Presentation Assessment

Dear participants,

After carefully listening to the presentations of this session, please kindly recommend two excellent Oral Presentations with reference to the following evaluation criteria.

The Session Chair will count the votes from each presentation and select ONE Best Oral Presentation in this session. If there is a tie, the Session Chair will make the final decision.

The winner will be announced at the official website after the conference.

You can refer to the following criteria for best oral selection:

Items	Assessment
Content	Right, Logical, Original, Well-Structured
Language	Standard, Clear, Fluent, Natural
Performance	Spirited Appearance, Dress Appropriately, Behaves Naturally
PowerPoint	Layout, Structure, Typeset, Animation, Multimedia
Reaction	Build a Good Atmosphere, Speech Time Control Properly

Please write down the paper ID and give reasons for your recommendation:

Paper ID	Reasons

Evaluated by:	
Paper ID:	

Note: Please fill it out and give it to the Session Chair or assistant so that the Best Oral Presentation could be selected.

Oral Session 1: Advanced Energy Systems, Materials and Urban Sustainability

Time: 13:30-17:35, July 22, 2025 (Japan Standard Time UTC+9)

Location: Meeting Room 401, Kunibiki Messe

Session Room Link: http://www.academicconf.com/teamslink?confname=nefes2025

Session Chair:

13:30-15:10 Dr. Jianhua Shen, East China University of Science and Technology, China

15:30-17:35 Dr. Daniel F. Hollenbach, C S Engineering, Inc., USA

		Reliable Large-scale Simulation of Energy Materials Based on	
13:30-13:50	FES3175	Machine Learning Potential	
	(Invited)	Prof. Sang Uck Lee, School of Chemical Engineering, Sungkyunkwan	
		University, Republic of Korea	
	FES3245	Intelligent Mine Designs for Controlled Subsidence and Seismicity	
13:50-14:10		in the United States Operations	
	(Invited)	Dr. Hamid Maleki, Maleki Technologies, Inc., USA	
		Preparation of Highly Efficient Electrocatalysts Based on the	
		Concept of Frustrated Lewis Pairs (FLP) for the Reduction of	
14:10-14:30	FES3203	Nitrate to Synthesize Ammonia	
	(Invited)	Prof. Yihua Zhu, School of Materials Science and Engineering, East	
		China University of Science and Technology, China	
		Adaptive Defense Plan to Optimize Anticipated Islanding of	
	FES3187	Critical Microgrids	
14:30-14:50	(Invited)	Dr. M. A. Mohammed Manaz, Department of Electrical Engineering,	
	(Inviccu)	National Sun Yat-sen University	
		Thermo-Mechanical Performance Enhancement Mechanisms in	
	FES3258	Nano-Modified Phase Change Cementitious Energy-Storage	
14:50-15:10	(Invited)	Materials	
14.30-13.10	Online		
	Onnie	Prof. Yushi Liu, School of Civil Engineering, Harbin Institute of	
15 10 15 20		Technology, China	
15:10-15:30		Coffee Break	
		Coking Behaviours during the Steam Reforming or Thermal	
		Decomposition of Ethanol over A Nickel/silica-alumina-beta (SBA-	
15:30-15:50	FES3247	15) Catalyst	
13.30 13.30	(Invited)	Dr. Félix Mérimé Bkangmo Kontchouo, Department of Energy and	
		Power Engineering, Faculty of Materials Science and Engineering,	
		Nanjing Forestry University, China	
15:50-16:05		Techno-Economic Assessment of Converting Municipal Solid	
		Waste (Plastic and Tyre) into Standard Automobile Fuel	
	FES3233	Dr. Md Jahirul Islam, Centre for Hydrogen and Renewable Energy,	
		School of Engineering and Technology, Central Queensland University,	
		Australia	
16:05-16:20	PEG445:	Transforming Power Plant Dispatch: Integrating Environmental	
	FES3154	Costs to Prioritize Clean Energy and Address Climate Change	

		Dr. Arif S. Malik, Department of Electrical and Computer Engineering,
		Sultan Qaboos University, Oman
		Improved Heat Transfer Efficiency by Surface Patterning in
16 20 16 25	EEC2156	Developing Laminar Channel Flow
16:20-16:35	FES3156	Dr. Are Simonsen, Flow Technology Group, Process Technology
		Department, SINTEF Industry, Norway
		Electrical Conductivity Measurements for Monitoring State of
16.25 16.50	EEC2170	Charge in Latent Thermal Energy Storage Systems
16:35-16:50	FES3160	Dr. Galina Simonsen, Multiphase Flow Laboratory, Process
		Technology Department, SINTEF Industry, Norway
		New Morphology Modifier Enables the Preparation of Ultra-long
	FES3167	Platinum Nanowires Excluding Mo Component for Efficient
16:50-17:05		Oxygen Reduction Reaction Performance
		Dr. Jianhua Shen, School of Materials Science and Engineering, East
		China University of Science and Technology, China
		An Adaptive Lithium-Ion Battery SOC Estimation Method for a
17:05-17:20	FES3218	Wide Temperature Range
1/:05-1/:20		Prof. Xiong Shu, Hunan Provincial Key Laboratory of Vehicle Power
		and Transmission System, Hunan Institute of Engineering, China
17.20 17.25	FES3244	Operating Characteristics of a Sub-Core Planetary Reactor
17:20-17:35		Dr. Daniel F. Hollenbach, C S Engineering, Inc., USA

Oral Session 2: Smart Grids, Energy Storage and Fault Analysis

Time: 08:50-12:00, July 23, 2025 (Japan Standard Time UTC+9)

Location: Meeting Room 401, Kunibiki Messe

Session Room Link: http://www.academicconf.com/teamslink?confname=nefes2025

Session Chair:

Prof. Shogo Nishikawa, College of Science and Technology, Nihon University, Japan

	FES3164	Removal Technology of Reflective Disturbance for Detecting Open
08:50-09:10		Fault of Bypass Circuit of PV Module with IR Camera
	(Invited)	Prof. Shogo Nishikawa, College of Science and Technology, Nihon
		University, Japan
09:10-09:25		Influence of Partial Discharging in a Latent Heat Thermal Energy
	FES3185	Storage Unit: 3D Numerical Study
	1 120103	Dr. Soumaya Sokakini, IMT Nord Europe, Institut Mines-Telecom,
		Centre for Energy and Environment, University of Lille, France
		Optimization Study of Steam Power System in Iron and Steel Mills
09:25-09:40	FES3206	Considering Waste Heat Utilization
07.23-07.40	FES3200	Dr. Tingting Xu, School of Energy and Power Engineering, Dalian
		University of Technology, China
	FES3207	Hydrothermal Characteristic of Pulsating Heat Pipe Arranged in
09:40-09:55		Tubular Loop
09.40-09.33		Prof. Shyy Woei Chang, Department of Systems and Naval Mechatronic
		Engineering, National Cheng Kung University
	FES3223 Online	Sustainable Electrodes for a Greener Future: Materials and
00.55 10.10		Applications in Microbial Fuel Cells
09:55-10:10		Dr. Segundo Jonathan Rojas Flores, Vicerrectorado de Investigación,
		Universidad Autónoma del Perú, Peru
	FES3225 Online	Bioelectrochemical Valorization of Mango Waste: A Sustainable
		Approach for Renewable Energy Generation in Microbial Fuel
10:10-10:25		Cells
		Dr. Segundo Jonathan Rojas Flores, Vicerrectorado de Investigación,
		Universidad Autónoma del Perú, Peru
10:25-10:45		Coffee Break
	FES3168	Optically Design of Beam-down Heliostats Plants
10:45-11:00		Dr. Daniela Fontani, Italian National Council of Research, National
		Institute of Optics (CNR-INO), Italy
11:00-11:15	FES3229	Fault Analysis of SCR Denitrification System Based on Big Data
		Ms. Yawen Wang, College of Energy Power, Nanjing University of
		Aeronautics and Astronautics, China
	FES3230	AI-Enabled Energy Management Device for Sustainable QoL
11:15-11:30		Dr. Husam S. Samkari, Dept. of Electrical Engineering, University of
		Tabuk, Saudi Arabia; Artificial Intelligence and Sensing Technologies
		Research Center, University of Tabuk, Saudi Arabia

11:30-11:45	FES3255	Decoupling Analysis between CO ₂ Emissions and Economic Growth in Manufacturing Sector Across Selected Indonesian Provinces Ms. Naomi Ratrianti, Graduate School of Humanities and Social Sciences, Hiroshima University, Japan; Department of Economics, Faculty of Economics and Business, Universitas Gadjah Mada, Indonesia
11:45-12:00	FES3226 Online	Bibliometric Analysis of the Application of Artificial Intelligence and Machine Learning in Microbial Fuel Cell Optimization: Emerging Trends and Research Opportunities Dr. Segundo Jonathan Rojas Flores, Vicerrectorado de Investigación, Universidad Autónoma del Perú, Peru

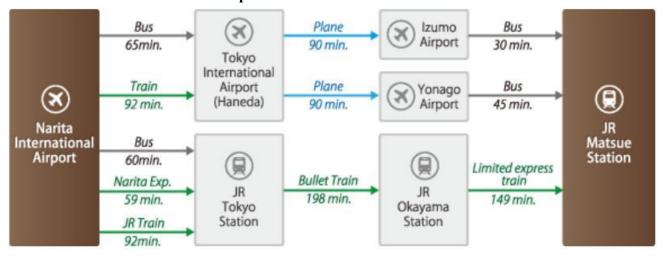
Video Pres	sentations:
FES3196	Framework for Sustainable Building Design – Utilizing Parametric Design and
	BIM in the Conceptual Design Phase
	Dr. Kitti Ajtayné Károlyfi, Department of Structural and Geotechnical Engineering,
	Széchenyi István University, Hungary
FES3221	Bibliometric analysis: On the Use of Microbial Fuel Cells in Reducing Antibiotic
	Concentration and Generating Electricity Simultaneously
	Dr. Santiago M. Benites, Vicerrectorado de Investigación, Universidad Autónoma del
	Perú, Lima, Peru
FES3222	Bioenergy from Agriculture: Converting Rice Waste into Green Electricity
	Dr. Santiago M. Benites, Vicerrectorado de Investigación, Universidad Autónoma del
	Perú, Lima, Peru

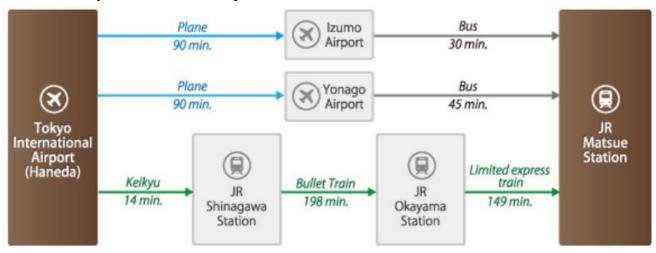
Part V Conference Venue

Kunibiki Messe (Shimane Prefectural Convention Center)

The biggest convention center in Shimane prefecture, Kunibiki Messe, is located in the center of Matsue City. There are Exhibition Hall (4,018 sqm), Multipurpose Hall (686 sqm), International Conference Hall (510 sheets), and 19 meeting rooms.

Free Wi-Fi is available in building.




Access to JR Matsue Station:

1. From Narita International Airport

2. From Tokyo International Airport

3. From Kansai International Airport

Part VI Acknowledgements

On behalf of the NEFES 2025 Organizing Committee, we would like to take this opportunity to express our sincere gratitude to our participants. We would also like to express our acknowledgements to the Technical Program Committee members who have given their professional guidance and valuable advice as reviewers. For those who contribute to the success of the conference organization without listing the name below, we would love to say thanks as well.

Conference General Chair

Prof. Hossam A. Gabbar, Professor, Director of Smart Energy Systems Lab, Ontario Tech University, Canada

Technical Program Committee Chairs

Prof. Emeritus Hisayoshi Hayashi, University of Tsukuba, Japan

Dr. Grigorios L. Kyriakopoulos, School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Greece

Prof. Mikihisa Umehara, Toyo University, Japan

Prof. Shunli Wang, Executive Vice President of Smart Energy Storage Institute, China

Prof. Fuqiang Wang, Department of New Energy, Harbin Institute of Technology (Weihai), China

Committee Member

Prof. Muslum Arici, Mechanical Engineering Department, Kocaeli University, Turkey

Dr. Tushar Anand, National Institute of Technology (NIT) Silchar (Institute of National Importance), India

Assoc. Prof. Bashir Ahmmad Arima, Department of Informatics and Electronics Faculty of Engineering, Yamagata University, Japan

Dr. Iman Bagherpour, Islamic Azad University, Iran

Dr. J. Pradeep Bhasker, Hindustan Institute of Technology & Science, India

Dr. Mingjie Chen, Hydrogeologist, Water Research Center, Sultan Qaboos University, Oman

Dr. Richao Cong, Department of Regional Cultural Policy and Management, Shizuoka University of Art and Culture, Japan

Dr. Ahmed M Daabo, College of Petroleum and Mining Engineering, University of Mosul, Iraq

Assoc. Prof. Maciej Dzikuć, Department of Energy Transformation, University of Zielona Gora, Poland

Assoc. Prof. Diana Enescu, Department of Electronics, Telecommunications and Energy, VALAHIA University of Targoviste, Romania; Physical Thermodynamics Unit, INRiM, Torino, Italy

Dr. S. HARIKRISHNAN, Kings Engineering College, India

Assoc. Prof. Kumaran Kannaiyan, Mechanical Engineering, Guangdong Technion-Israel Institute of Technology, China

Dr. Tomasz Kisielewicz, Warsaw University of Technology, Poland

Prof. Sang Uck Lee, School of Chemical Engineering, Sungkyunkwan University, Republic of Korea

Prof. Cheng-I Lin, Department of Fire Science, WuFeng University

Dr. Yushi Liu, School of Civil Engineering, Harbin Institute of Technology, Harbin, China

Dr. Claudia Masselli, University of Naples Federico II, Italy

Dr. Ebrahim Navid Sadjadi, Department of Informatics, Universidad Carlos III de Madrid, Spain

Assoc. Prof. Katarzyna Turoń, Faculty of Transport and Avition Engineering, Silesian University of Technology, Poland

Dr. Baiju V, Department of Mechanical Engineering, TKM College of Engineering, India Prof. Sheng-Hung Wu, Research Center for Energy Technology and Strategy, National Cheng Kung University

Memo

